Hybrid Atomistic–Continuum Formulations for Gaseous Flows
نویسندگان
چکیده
3
منابع مشابه
Hybrid atomistic-continuum methods for multiscale hydrodynamics
We discuss hybrid atomistic-continuum methods for multiscale hydrodynamic applications. Both dense fluid and dilute gas formulations are considered. The choice of coupling method and its relation to the fluid physics is discussed. The differences in hybrid methods resulting from underlying compressible and incompressible continuum formulations as well as the importance of timescale decoupling a...
متن کاملA Laplacian-based algorithm for non-isothermal atomistic-continuum hybrid simulation of micro and nano-flows
A Laplacian-based algorithm for non-isothermal atomistic-continuum hybrid simulation of micro and nano-flows. Copyright and reuse: The Warwick Research Archive Portal (WRAP) makes this work of researchers of the University of Warwick available open access under the following conditions. This article is made available under the Creative Commons Attribution 3.0 Unported (CC BY 3.0) license and ma...
متن کاملMulti-scale modelling and hybrid atomistic-continuum simulation of non-isothermal flows in microchannels
A hybrid atomistic-continuum method devoted to the study of multi-scale problems is presented. The simulation domain is decomposed into three regions: the bulk where the continuous Navier-Stokes and energy equations are solved, the neighbourhood of the wall simulated by the Molecular Dynamics and the overlap region which connects the macroscopic variables (velocity and temperature) between the ...
متن کاملA Priori Error Analysis of Two Force-Based Atomistic/Continuum Hybrid Models of a Periodic Chain
The force-based quasicontinuum (QCF) approximation is a non-conservative atomistic/continuum hybrid model for the simulation of defects in crystals. We present an a priori error analysis of the QCF method, applied to a one-dimensional periodic chain, that is valid for an arbitrary interaction range, large deformations, and takes coarse-graining into account. Our main tool in this analysis is a ...
متن کامل[draft] Imece2003-41251 3–dimensional Hybrid Continuum–atomistic Simulations for Multiscale Hydrodynamics
We present an adaptive mesh and algorithmic refinement (AMAR) scheme for modeling multi–scale hydrodynamics. The AMAR approach extends standard conservative adaptive mesh refinement (AMR) algorithms by providing a robust flux–based method for coupling an atomistic fluid representation to a continuum model. The atomistic model is applied locally in regions where the continuum description is inva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003